recent posts


resources

podcasts

  1. amit verma’s seen and the unseen πŸ”—
  2. struthi rajagopalan’s ideas of india πŸ”—
  3. amit verma and ajay shah’s everything is everything πŸ”—
  4. macro musing by david beckworth πŸ”—
  5. capitalism and freedom in 21st century by jon hartley πŸ”—

blogs

  1. economics
    1. paul krugman wonks out πŸ”—
    2. noahpinion πŸ”—
    3. marginal revolution πŸ”—
    4. apricitas economics πŸ”—
    5. Liberty Street Economics πŸ”—
    6. best of econtwitter πŸ”—
    7. greg mankiw’s blog πŸ”—
    8. Economics and Finacne at Project Syndicate πŸ”—
    9. the grumpy economist by john cochrane πŸ”—
    10. the great gender divergence πŸ”—
    11. the central bank watcher πŸ”—
  2. news
    1. ft’s Alphaville πŸ”—
    2. Currency Througts πŸ”—
    3. ft’s newsletters πŸ”—
    4. bloomberg’s newsletters πŸ”—
  3. india
    1. anticipating the unintended πŸ”—
    2. urbanomics πŸ”—
    3. ideas for india πŸ”—
    4. mostly economics πŸ”—
    5. ft’s india business briefing πŸ”—
    6. the leap blog πŸ”—

macroeconomics

  1. overview articles:

    1. what do we know about macroeconomics that fisher and wicksell did not?, blanchard (2000) πŸ”—
    2. macroeconomist as scientist and engineers, mankiw (2006) πŸ”—
    3. revolution and evolution in twentieth-century macroeconomics, woodford (1999) πŸ”—
    4. macroeconomics is still in its infancy, noha smith πŸ”—
    5. what i learned in econ grad school, noha smith [pt. 1 πŸ”—; pt. 2 πŸ”— ]
    6. bob lucas and his papers, john cochrane πŸ”—
    7. macroeconomics: a reading list πŸ”—
    8. macroeconomics after lucus, sargent (2024) πŸ”—
  2. core textbooks: phdmacrobook πŸ”—, acemoglue πŸ”—, stocky & lucus πŸ”—, sargent & ljungqvist πŸ”—
  3. new keynsian: gali πŸ”—, woodford πŸ”—

  4. other lecture notes:
    1. chris carroll’s notes πŸ”—
    2. vv chari’s notes πŸ”—
    3. jesΓΊs fernΓ‘ndez-villaverde’s lecture slides πŸ”—

measure theory

  1. terry tao’s notes πŸ”—
  2. measure, integration & real analysis by axler πŸ”—
  3. measure theory and probability theory by krishna athreya and soumendra lahiri πŸ”—
  4. krishna jagannathan’s probability foundations for electrical engineers πŸ”— \

functional anlaysis

  1. notes on functional analysis by rajendra bhatia πŸ”—
  2. measure, integration & real analysis by axler πŸ”—
  3. functional analysis for probability and stochastic processes by adam bobrowski πŸ”—

measure-theoritic probability & stochastic processes

  1. probability and stochastic by erhan cinlar πŸ”—
  2. measure, probability and functional analysis by hannah geiss & stefan geiss πŸ”—
  3. probability with martingales by david williams πŸ”—
  4. measure theory, probability, and stochastic processes by jean-franΓ§ois le gall πŸ”—

stochastic calculus

  1. stochastic integration and differential equations by philip protter πŸ”—
  2. introduction to stocahstic calculus with application by fima klebaner πŸ”—
  3. Brownian Motion and stochastic calculus by karatzas & shreve
  4. levy processes and stochastic calculus b david applebaum πŸ”—
  5. intro to stochastic integration by hui-hsiung kuo πŸ”—
  6. stochastic calculus and financial applications by michael steele

differential equations

  1. mit opencourseware differential equations courseπŸ”—
  2. steve brunton’s youtube course πŸ”—
  3. non-linear dynamics and chaos by steven strogatz πŸ”—
  4. love affiers and differential equations by steven strogatz

time series

  1. john cochrane’s time series for macroeconomists
  2. introduction to difference equations by saber elaydi
  3. applied time series by enders
  4. time series by hamilton

deep learning

  1. dive into deep learning book πŸ”—
  2. theory of deep learning book πŸ”—
  3. theoretical foundations of deep learning, ankur moitra [πŸ”—]
  4. deep learning theory, matus telgarsky πŸ”—
  5. deep learning architectures: a mathematical approach, ovidiu calin πŸ”—

reinforcement learning

  1. neuro-dynamic programming, bertsekas πŸ”—
  2. foundations of rl, chi jin πŸ”—
  3. optimal control and rl at cmu πŸ”—
  4. intro to reinforcement learning by barto & sutton

machine learning

  1. andrew ng’s lecture notes

youtube

  1. math lectures
    1. steve brunton πŸ”—
    2. jason bramburger πŸ”—
    3. the bright side of mathematics πŸ”—
    4. mike, the mathematician πŸ”—
  2. casual
    1. vertasium
    2. 3blue1brown